A canonical basis for the matrix transformation X → AX + XB
نویسندگان
چکیده
منابع مشابه
Norm Estimates for Solutions of Matrix Equations Ax − Xb = C and X − Axb = C
Let A, B and C be matrices. We consider the matrix equations Y − AY B = C and AX −XB = C. Sharp norm estimates for solutions of these equations are derived. By these estimates a bound for the distance between invariant subspaces of matrices is obtained.
متن کاملOn the covariance of X in AX = XB
Hand-eye calibration, which consists in identifying the rigidbody transformation between a camera mounted on the robot end-effector and the end-effector itself, is a fundamental problem in robot vision. Mathematically, this problem can be formulated as: solve for X in AX = XB. In this paper, we provide a rigorous derivation of the covariance of the solution X , when A and B are randomly perturb...
متن کاملOn the Matrix Equation Xa − Ax = X
We study the matrix equation XA − AX = X p in M n (K) for 1 < p < n. It is shown that every matrix solution X is nilpotent and that the generalized eigenspaces of A are X-invariant. For A being a full Jordan block we describe how to compute all matrix solutions. Combinatorial formulas for A m X ℓ , X ℓ A m and (AX) ℓ are given. The case p = 2 is a special case of the algebraic Riccati equation.
متن کاملWhy we solve the operator equation AX − XB = C ∗ † ‡
This work studies how certain problems in quantum theory have motivated some recent reseach in pure Mathematics in matrix and operator theory. The mathematical key is that of a commutator or a generalized commutator, that is, find an operator X ∈ B(H) satisfying the operator equation AX − XB = C. By this we will show how and why to solve the operator equation AX − XB = C. Some problems are stud...
متن کاملSteffensen method for solving nonlinear matrix equation $X+A^T X^{(-1)}A=Q$
In this article we study Steffensen method to solve nonlinear matrix equation $X+A^T X^{(-1)}A=Q$, when $A$ is a normal matrix. We establish some conditions that generate a sequence of positive denite matrices which converges to solution of this equation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1966
ISSN: 0022-247X
DOI: 10.1016/0022-247x(66)90024-2